Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(44)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37527631

RESUMO

We report the formation of Mo1-xWxO3-CdS (0 ≤ x ≤1) nanophotocatalysts by a combination of solid-state and solution-impregnation processes. The formation of 2D+1D heterostructured composite was revealed by electron microscopy and the structure of ternary co-catalyst and photocatalysts were confirmed by spectroscopic analyses. The H2evolution activity of the nanocomposites was assessed via photocatalytic splitting of water under the irradiation of visible light. All the nanocomposites studied here exhibit notable catalytic activity and good photostability using lactic acid as the sacrificial electron donor compared to a pristine compound. Among these nanocomposites, WO3-CdS shows superior activity with H2evolution rates of 15.19 mmolg-1h-1, 28 times higher than the pure CdS. The WO3-CdS photoactivity is not only superior among all the composites studied here but also highest among the reported WO3composite catalysts to date. The novel construction of the oxide-based nanocomposite photocatalyst shown here efficiently enhances the catalytic activity by effective separation of charge carriers and inhibits photocorrosion of CdS nanorods. The apparent quantum yield of the hydrogen evolution for WO3-CdS was found to be 8% in the visible spectral range. The disparity of the catalytic ability between MoO3and WO3and the variance among the compositions was unraveled through optical band-offset alignment with respect to CdS. Though the 2D+1D novel fabrication is common to all the composites, the difference in the type of band alignment MoO3(type-I) and WO3(type-II) with CdS plays a highly significant role in the co-catalytic activity.

2.
J Colloid Interface Sci ; 627: 956-968, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35901574

RESUMO

Carbon dots (C-dots) developed from beetroot is used for the rational design of cadmium sulphide based heterojunction photocatalysts (C-dots@CdS) using hydrothermal technique. The crystal structure, phase, morphology and optical characteristics of the synthesised materials are determined using X-ray diffraction (XRD), High resolution transmission electron microscopy (HR-TEM), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL spectroscopy), BET adsorption, X-ray photoelectron spectroscopy (XPS) and electrochemical studies. Using C-dots@CdS catalytic system, a superior photocatalytic activity relative to the undecorated CdS is observed. Among the C-dots@CdS samples, the CdS loaded with 6 wt% of C-dots exhibited enhanced hydrogen evolution rate compared with other samples considered for the study. CdS nanospheres modified with C-dots (6 wt%) resulted in the photocatalytic hydrogen evolution rate of 1582 µmolg-1 against 849 µmolg-1 evolution rate obtained for CdS nanospheres within 3 h. In spite of being 0D/0D type nano-heteroarchitecture, C-dots@CdS system obtained an apparent quantum yield of 6.37 % for the catalytic dosage of 20 mg under the irradiation of visible light. CdS in the C-dots@CdS system serves as the light harvester while C-dots with discernible edges can maintain the continuous supply of photo-excited charge carriers and hence can reduce the charge-carrier recombination. Further, the photodegradation of crystal violet dye using the optimised dosage of C-dots@CdS-6 exhibited an efficiency of 97.3 % in 120 min of visible light irradiation under neutral conditions. The detailed kinetic study reveals that the mechanism of photodegradation of crystal violet dye using C-dots@CdS system can be described using pseudo-second-order kinetics. The presence of oxygen rich hydrophilic surface functionalities of C-dots, the formation of near-surface heterojunction and the suitable band structure of C-dots@CdS system leading to the optimum charge carrier separation kinetics can be attributed to the enhanced photocatalytic performance. This work offers a promising strategy to develop bio-derived C-dots based heterojunction photocatalyst to address the burgeoning energy and environmental demands.


Assuntos
Carbono , Nanosferas , Cádmio , Compostos de Cádmio , Compostos Inorgânicos de Carbono , Violeta Genciana , Hidrogênio , Luz , Oxigênio , Sulfetos
3.
Nanotechnology ; 33(4)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34666320

RESUMO

Carbon dots (CDs) endowed with outstanding physico-chemical characteristics expeditiously garnered tremendous popularity in the scientific community. CDs can be synthesized from a variety of natural resources and can replace metal semiconductor quantum dots in the range of applications such as bio-imaging, sensing and catalysis. Herein, CDs are green synthesized fromBeta vulgarisvia a single step hydrothermal approach (b-CDs). The synthesized carbon dots are characterized using UV-visible spectrophotometry, Fluorescence spectroscopy, High resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction technique (XRD) and Raman spectroscopy. The b-CDs hence developed exhibited the signature 'excitation-dependent fluorescence emission' with its most intense emission in the green region. The quantum yield for the b-CDs obtained by this synthetic approach evinced an appreciable value of 11.6%. The antioxidant property of b-CDs are evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay to obtain a maximum scavenging activity of 94.5% at a concentration of 1000µg ml-1and its underlying mechanisms are illustrated. The blood compatibility of b-CDs are assessed using haemolysis assay and the cytotoxicity evaluated using MTT assay shows significant cell growth-inhibition against the human breast cancer (MCF-7) and hepatocellular carcinoma (HepG2) cell lines. This succinct study demonstrates the inherent therapeutic potential of biocompatible carbon dots.


Assuntos
Antineoplásicos , Antioxidantes , Beta vulgaris/química , Química Verde/métodos , Pontos Quânticos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Compostos de Bifenilo/metabolismo , Proliferação de Células/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Células MCF-7 , Picratos/metabolismo , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...